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Particulate drug carriers in pharmaceutical sciences
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Introduction: Why gene therapy?
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Schematic representation of lipid nanoparticle (MF-DNA-LNP) structure, composition,

Lipid nanoparticles (LNPSs)
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Nanovector pDNA
coding for ASS

and the proposed roles of the different constituents.

N/P ratio = the ratio of moles of the amine groups of cationic

polymers to those of the phosphate ones of nucleic acids
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First example: Vaccination (Covid-19)

« |dea: “Reprogram” cells of the body to produce their own vaccine

 Induction of short acting (!) effects

2018: Onpattro (Patisiran) as first FDA approved LNP drug. siRNA
approach to treat rare hereditary transthyretin-mediated amyloidosis.

2020: FDA approved mRNA based corona vaccines.

e.g. Pfizer: 7 mo from the first reported case to

pivotal trial, 11 mo to FDA Emergency Authorization.

3 billion doses by end 2021.

Clinical and regulatory timeline
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Pfizer story: Nature Biotechnology volume 41, pages 183-188 (2023)

n el Onpattro story: https://doi.org/10.1038/s41565-019-0591-y
The history of RNA vaccines: https://www.nature.com/articles/d41586-021-02483-w
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SIRNA based therapeutics

siRNA pathway
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RISC (RNA-inducing
silencing complex)

mRNA

l mMRNA cleavage

IV infusion every 3 weeks &
dexamethasone 10 mg oral &
acetaminophen (500 mg) &
IV H1 and H2 blocker

Chemically stabilized siRNA

g-O'MB

5'- GGGUAAAUACAUUCUUCAU -3
3'- CCCAUUUAUGUAAGAAGUA -5

O .0 F
5'-P-GGGUAAAUACAUUCUUCAU -3 —O’R
3'- CCCAUUUAUGUAAGAAGUA-P-5' O 0 B
N =2'-0H; N = 2'-F; N = 2'-O-methyl %{O OCHj

2.5 mg/kg Revusiran
QDx5 QWx4

-# 1 mg/kg Vutrisiran SC

1.5+

Relative Serum TTR Protein
Concentration

Time (Day)

Duration of activity
correlates with metabolic stability
of the siRNA.

DOI: 10.1124/dmd.121.000428



Second example: Urea cycle disease citrullinemia

Idea: Induce long-acting effects to replace defective enzymes / transporters

Type 1: Defective ASS1 gene (argininosuccinate synthetase ASS)
- 1:57°000 birth, autosomal recessive, early onset

- Life-threatening accumulation of ammonia in plasma

- Lifelong diet > liver transplantation
- ASS1 expression in hepatocytes

- More than 130 affected gene loci

Type 2: Defective SLC25A13 (ORNT1)
(mitochondrial transporter citrin)

- 1:200°000 birth, adulthood

- Often Japanese man affected

Our vision:

* Gene REPLACEMENT therapy to
) induce LONG-LASTING gene
expression (5-10% of WT levels)

* Well tolerated and safe




DNA versus RNA

Nanovector DNA as an alternative to RNA based gene delivery:

- DNA expression plasmid (0.45 kb backbone)

- Scaffold/matrix attachment region (S/MAR) motifs to mediate episomal
maintenance and replication in mitotically active cells

- Superior 1V tolerability of DNA versus RNA

- Lifetime expression of atransgene in a PKU mouse model
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Long-term correction of hyperphenylalaninemia in PKU (Pahe"“?) mice after delivery of S/MAR - 800 bp

MC-DNA vectors expressing the Pah-cDNA from the liver-specific P3 promoter.
Vectors were delivered to the liver of adult PKU mice by a single HTV injection. ]
Viecelli et al. Hepatology. 2014 Sep; 60(3): 1035-1043. Bozzaetal, Sci. Adv. 2021; 7 : eabf1333



Design of biomimetic inspired LNPs

Working hypothesis:

constructs offer a considerable potential for improvement.

Claudia Lotter

Modification of the helper lipid composition of LNPs and their 0
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Eur J Pharm Biopharm. 2022. 172:134-143.

Viruses (i.e., Ebola, Vaccinia,
Dengue) have phosphatidylserine
(PS) in their envelope

> Facilitates host cell infection
(cellular uptake)

\ 4
Goal:

Development of biomimetic inspired LNP
formulations using viral lipids (i.e., PS)



PS-LNPs show enhanced in vitro potency

In vitro transfection (eGFP) of hepatocellular carcinoma HuH-7 cells

Transfection efficacy: Number (%) of transfected cells
Transfection potency: Fluorescent signal intensity

280 ng pDNA, 48 h 280 ng mRNA, 24 h
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* Lead for pDNA: 5% PS * Lead for mRNA: 2.5% PS
* 30% increased TE * Comparable TE
* 85% higher eGFP signal intensity * 75% higher eGFP signal intensity

Normalized EGFP
Signal Intensity [%]
0

Control

transfection efficacy and potency in vitro

) * Combination of PS with LNPs leads to increased
* Strongest effect using 2.5-5% PS

Permanent cationic lipids
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pDNA mRNA

5% PS 2.5% PS

N/P = 10; cationic lipid:cholesterol:DOPC:DMPE-PEG2000 = 50:39:10:1; 0.28 pg nucleic acid mL?
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PS-LNPs show enhanced in vivo potency

Zebrafish larvae (Danio rerio) as an in vivo vertebrate screening model
Intravenous injection of 1-3nl of fluorescent LNPs via Duct of Cuvier
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Summary

Gene delivery offers promising therapeutic options
Lipid nanoparticles (LNPs) as a multifunctional drug delivery vehicle

Transfection of somatic cells only,
no integration into genome

PS promotes cellular uptake

MRNA mediates short duration effects
DNA mediates long duration effects
Our dream and vision:

Treatment options for a disease
such as citrullinemia




Thank you for your attention!

i )
"\,\':\'
--------

“ E I—I_‘ Swiss National
Science Foundation

L|p0|dSt|ftung

”‘M L O

(:} scaht

Swiss Centre for Applied
Human Toxicology

A St

13



